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Comment on “Main role of fractal-like nature of conformational
space in subdiffusion in proteins”
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Maggi and Orozco [Phys. Rev. E 109, 034402 (2024)] address the question of the origin of the subdiffusional
dynamics observed in molecular dynamics (MD) simulations of proteins. Confirming the conclusions of previous
publications that used closely similar methods [Neusius et al. Phys. Rev. Lett. 100, 188103 (2008); Phys. Rev.
E 83, 021902 (2011)], Maggi and Orozco conclude that a random walk on a fractal surface is an appropriate
model. However, the logic used in their paper to make that conclusion is erroneous.
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Reference [1] defines subdiffusion as a sublinear time
dependence of the ensemble-averaged mean squared displace-
ment (MSD) [Eq. (1)]. To obtain the MSD from the molecular
dynamics (MD) simulation trajectories Ref. [1] applies a time
average over a single trajectory [Eq. (5)], a procedure that
assumes ergodic behavior. A continuous time random walk
(CTRW) is examined as a potential alternative trapping model
for jumps between clusters of conformational states. However,
Ref. [1] does not take into account the fact that CTRW mod-
els require careful treatment with respect to ergodicity and
that properties resulting from CTRW are therefore critically
dependent on the way averages are obtained. CTRW mod-
els indeed exhibit subdiffusion if the distribution of waiting
times, ψ (τ ), has a Pareto-like power-law tail, ψ (τ ) ∼ τ−1−α

with an exponent 0 < α < 1 [2–6]. However, CTRW is an
intrinsically nonergodic model, exhibiting aging effects, and
therefore quantities obtained via time and ensemble averages
are not interchangeable [7]. In assessing the validity of CTRW,
Ref. [1] compares the average number of jumps, 〈N (t )〉 ∼ tα ,
derived in Ref. [8], which is an ensemble average, with the
mean number of jumps [Eq. (7)], which is time averaged
and exhibits a linear time dependence as shown in Figs. 4(a),
13(a), and 14(a). Owing to a perception that the linear time
dependence is inconsistent with CTRW, the conclusion of
Ref. [1] is to discard CTRW. However, this argument is erro-
neous as CTRW in fact does predict a linear time dependence
of the time-averaged number of jumps (combining Eqs. (4)
and (6) in [9] and discussed in Ref. [8] [Eq. (24)]). Hence, the
observed time-averaged mean number of jumps in Ref. [1] is
in reality not in conflict with CTRW.
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A subdiffusive time-averaged MSD is found in MD simula-
tions of peptides and proteins [5,6,10,11]. Unbounded CTRW
models fail to generate a subdiffusive time-averaged MSD
and therefore cannot explain this [5,12]. Although the failure
of unbounded CTRW is in agreement with the conclusions
of Ref. [1], this failure does not follow from the reasoning
laid out in Ref. [1] but rather straight from previous results
[5,9,11,12]. Rather than assessing CTRW’s appropriateness
as compared to fractal diffusion, Ref. [1] assumes ergodicity
without noticing that this automatically rules CTRW out. As
a consequence, Ref. [1] fails to identify the relevant quanti-
ties required for the assessment of CTRW versus alternative
mechanisms.

Besides the above fundamental misconception, the analysis
in Ref. [1] of fractal properties of the energy landscape is
problematic.

(1) The dynamics in the high dimensional atomistic con-
figuration space is projected onto two dimensions using
principal component (PC) analysis. It is an important decision
to chose an appropriate number of PCs, which is typically
done with respect to the eigenvalues, that is, with respect to
the share of the overall variance explained, e.g., by using the
scree plot approach [13]. In Ref. [1], the choice of two PCs
is deemed as “purely technical.” It remains unclear whether
relevant dynamical features are impaired or lost due to the
projection.

(2) The representation of the dynamics in a two-
dimensional subspace is particularly critical with respect to
Polya’s recurrence theorem [14], which states that for unbi-
ased random walks the probability of returning to the starting
position depends critically on the dimensionality, d , of the
Euclidean space [15]. Random walks are recurrent for d = 1
or 2; i.e., the random walker returns almost certainly infinitely
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often to the starting position, while they are transient for
d � 3; i.e., the probability that the random walker ever returns
to the starting position is strictly below 1 [15]. The same
is true for random walks on fractal lattices: unbiased walks
are recurrent for spectral dimension ds � 2, and transient
otherwise. As the Euclidean dimension is an upper bound of
the random walk’s spectral dimension, the projection to two
dimensions potentially affects the results of the probability of
return.

(3) Previous MD analyses of shorter biomolecules (with
up to 15 residues) found saturation of the MSD at about 104 ps
in simulations of 1 µs and beyond [5]. In Ref. [1] the systems
are much larger but the simulation lengths (50 ns) are far
shorter than in Ref. [5]. As in general such properties take
longer to converge for larger systems, it is unclear whether
the MSD has converged [16].

(4) Also, when calculating the MSD with a finite time
resolution, a logarithmic MSD exhibits far more data points
on longer timescales. Performing least-squares regression on
such a sample is thus dominated by the values at the upper end
of the time axis. Figure 1(b) exhibits a power-law regression
(dashed blue line) that deviates considerably from the data at
lower timescales. The exponent obtained reflects therefore not

a power law extending over the full time range from 101 to 104

ps, but rather only in the upper decade from 103 ps onwards.
A similar situation is seen in Fig. 7(b).

Further, the deviation introduced by the coarse-graining
procedure, measured as �, may be underestimated due to
the above bias, as the coarse graining affects the accuracy
mainly on short timescales, which have limited influence on
the least-squares regression.

(5) Finally, in Ref. [1], the fractal dimension, d f , is ob-
tained from the mass scaling function M(r). As can be seen
from Figs. 3(a), 8(a), 9(a), and 12, the fitting of the power
law extends over a very narrow span of distances, i.e., from
about 10−0.4 to 100.4 nm (roughly, 0.4–2.5 nm) or less.
That is, the longest distance is roughly 6 times the shortest
distance, and the observations span less than a single order of
magnitude.

In view of the above arguments, we agree with the conclu-
sion of Ref. [1] concerning appropriateness of a fractal-like
geometry of configuration space. However, we consider the
arguments against CTRW as mathematically wrong, the dis-
cussion of ergodicity incomplete, and the quantitative results
as potentially flawed by a number of factors including a pro-
jection onto an extremely low-dimensional subspace.
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